Skip to main content
Home

Search


NEI on Social Media | Search A-Z | en español | Text size S M L
Share
  • About NEI
    • NEI Research Accomplishments
    • Budget and Congress
    • About the NEI Director
    • History of the NEI
    • NEI 50th Anniversary
    • NEI Women Scientists Advisory Committee (WSAC)
    • Board of Scientific Counselors
    • National Advisory Eye Council (NAEC)
    • Donating to the NEI

     Contact Us

     Visiting the NIH Campus

    Mission Statement

    As part of the federal government’s National Institutes of Health (NIH), the National Eye Institute’s mission is to “conduct and support research, training, health information dissemination, and other programs with respect to blinding eye diseases, visual disorders, mechanisms of visual function, preservation of sight, and the special health problems and requirements of the blind.”

  • News & Events
    • Events Calendar
    • NEI Press Releases
    • News from NEI Grantees
    • Spokesperson bios
    • Statistics and Data
    • Resources for the media

    Pressroom Contacts

    Dustin Hays - Chief, Science Communication
    dustin.hays@nih.gov

    Kathryn DeMott, Media Relations
    Kathryn.DeMott@nih.gov

    NEI Office of Communications
    (301)496-5248

  • Health Information
    • Frequently asked questions
    • Clinical Studies
    • Publications Catalog
    • Photos and Images
    • Spanish Language Information
  • Grants and Funding
    • Extramural Research
    • Division of Extramural Science Programs
    • Division of Extramural Activities

    Extramural Contacts

    NEI Division of Extramural Research
    Suite 1300
    5635 Fishers Lane, MSC 9300
    Bethesda, MD 20892-9300
    (Courier services use: Rockville, MD 20852)
    301-451-2020

  • Research at NEI
    • Office of the Scientific Director
    • Office of the Clinical Director
    • Laboratories, Sections and Units
    • Division of Epidemiology and Clinical Applications
    • eyeGENE

    Research Directors Office

    Office of the Scientific Director

    Sheldon S. Miller, Ph.D., Scientific Director
    David M. Schneeweis, Ph.D., Deputy Scientific Director

    Office of the Clinical Director

    Brian P. Brooks, M.D, Ph.D., Clinical Director
    Emily Y. Chew, M.D., Deputy Clinical Director

  • Education Programs
    • National Eye Health Education Program (NEHEP)
    • Diabetic Eye Disease Education Program
    • Glaucoma Education Program
    • Low Vision Education Program
    • Hispanic/Latino Program
    • Vision and Aging Program
    • African American Program
  • Training and Jobs
    • Fellowships
    • NEI Summer Intern Program
    • Diversity In Vision Research & Ophthalmology (DIVRO)
    • Student Training Programs

    To search for current job openings visit HHS USAJobs

Home >> Research at NEI >> Ocular Gene Therapy Core
Listen

Ocular Gene Therapy Core

About Our Work: 

Building 6, Room 306
6 Center Drive
Bethesda, Maryland 20892-0610
Phone: (301) 594-5376
Fax: (301) 480-9917
Email: wuzh@mail.nih.gov

 

  • Research Interests
  • Research Summary
  • Structure
  • Recent Publications

 

Research Interests

The major goal of the Ocular Gene Therapy Core (OGTC) is to develop adeno-associated virus (AAV)-based gene therapeutics for inherited and acquired ocular diseases. We also provide expertise and cutting edge design options of AAV vectors to collaborating research groups interested in bringing AAV vector-based gene therapeutics to the clinic.

AAV vector is one of the most efficient gene delivery tools for modifying retinal cells. Gene therapy clinical trials using AAV vectors have been conducted for treatment of several inherited retinal diseases (IRD) and have shown promising results in patients with Leber congenital amaurosis type 2 (LCA2), choroideremia and Leber's hereditary optic neuropathy (LHON). To date, over 250 genes have been identified as disease-causing genes for IRD, and a majority of these diseases could be targets of gene therapy. We have been focusing our efforts on developing therapies for the diseases affecting relatively large patient populations or with severe symptoms.

    
 

Research Summary

Active Areas of Current Research

1. Gene replacement therapy for X-Linked Retinitis Pigmentosa (XLRP)

Mutations in Retinitis Pigmentosa GTPase Regulator (RPGR) and Retinitis Pigmentosa 2 (RP2) genes account for the majority of XLRP. RPGR mutations are one of the most frequent causes of total RP cases. We have conducted long-term efficacy and preliminary safety studies of gene replacement therapy in Rpgr and Rp2 gene knock-out mouse models (Wu et al., Hum Mol Genet, 2015; Mookherjee, et al., Hum Mol Genet, 2015), which have paved the way for further clinical development. NEI is prosecuting patent on this technology.

2. Mechanism-based gene therapy for LCA due to CEP290 mutations

Mutations in CEP290 gene are the most common cause of LCA. Gene replacement for CEP290-LCA is difficult to achieve, since a full-length CEP290 coding sequence is too large to be delivered by an AAV vector. We are currently seeking mechanism-based gene therapy for the disease, based on the existing knowledge of CEP290 protein structure and its interactome.

3. CRISPR/Cas9 mediated genome editing in postmitotic retinal neurons 

 We have established an AAV-based photoreceptor-specific CRISPR/Cas9 genome editing system. As precise gene correction or modification relies on homology-directed repair which is unfavorable in postmitotic photoreceptors, our initial effort will be focused on gene disruption mediated by non-homologous end joining. This may lead to novel therapies for retinal degeneration caused by gain-of-function or dominant mutations.

4. Gene replacement therapy for X-linked Juvenile Retinoschisis (XLRS)

We have been actively engaged in the pre-clinical and clinical development of gene therapy for X-linked Juvenile Retinoschisis (XLRS) led by Dr. Paul Sieving (NEI Director). We helped to design and develop the human retinoschisin AAV vector, which is currently being tested in phase I clinical trials of XLRS at NEI (https://clinicaltrials.gov/ct2/show/NCT02317887). NEI is also prosecuting patent on this technology.

 

Structure

Name Title E-mail
Zhijian Wu, Ph.D. Head wuzh@mail.nih.gov
Suja Hiriyanna, MS, MPhil Biologist hiriyannasd@nei.nih.gov
Myung Kuk Joe, Ph.D. Contractor Scientist myungkuk.myungkuk@nih.gov
Suddhasil Mookherjee, Ph.D. Research Fellow suddhasil.mookherjee@nih.gov
Wenhan Yu, Ph.D. Postdoctoral Fellow wenhan.yu@nih.gov

Recent Publications

  1. Yu W, Mookherjee S, Chaitankar V, Hiriyanna S, Kim JW, Brooks M, Ataeijannati Y, Sun X, Dong L, Li T, Swaroop A, Wu Z. Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice. Nat. Commun. 2017; 8: 14716
  2. Somasundaram P, Wyrick GR, Fernandez DC, Ghahari A, Pinhal CM, Simmonds-Richardson M, Rupp AC, Cui L, Wu Z, Brown RL, Badea TC, Robinson PR, Hattar S. C-terminal phosphorylation regulates the kinetics of a subset of melanopsin-mediated behaviors in mice. Proc Natl Acad Sci U S A. 2017; 114(10):2741-2746
  3. Keenan WT, Rupp AC, Ross RA, Somasundaram P, Hiriyanna S, Wu Z, Badea TC, Robinson PR, Lowell BB, Hattar SS. A visual circuit uses complementary mechanisms to support transient and sustained pupil constriction. Elife. 2016; pii: e15392
  4. Zeng Y, Petralia RS, Vijayasarathy C, Wu Z, Hiriyanna S, Song H, Wang YX, Sieving PA, Bush RA. Retinal structure and gene therapy outcome in retinoschisin-deficient mice assessed by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2016; 57(9): OCT277-87
  5. Sun X, Park JH, Gumerson J, Wu Z, Swaroop A, Qian H, Roll-Mecak A, Li T. Loss of RPGR glutamylation underlies the pathogenic mechanism of retinal dystrophy caused by TLL5 mutation. Proc Natl Acad Sci U S A. 2016; 113 (21): E2925-34
  6. Song H, Vijayasarathy C, Zeng Y, Marangoni D, Bush RA, Wu Z, Sieving PA. NADPH oxidase contributes to photoreceptor degeneration in constitutively active RAC1 mice. Invest Ophthalmol Vis Sci. 2016; 57(6): 2864-75
  7. Bush RA, Zeng Y, Colosi P, Kjellstrom S, Hiriyanna S, Vijayasarathy C, Santos M, Li J, Wu Z, Sieving PA. Preclinical dose-escalation study of intravitreal AAV-RS1 gene therapy in a mouse model of X-linked retinoschisis: Dose-dependent expression and improved retinal structure and function. Hum Gene Ther. 2016; 27(5): 376-89
  8. Hanke-Gogokhia C, Wu Z, Gerstner CD, Frederick JM, Zhang H, Baehr W. Arf-like protein 3 (ARL3) regulates protein trafficking and ciliogenesis in mouse photoreceptors. J Biol Chem. 2016; 291(13): 7142-55
  9. Díaz-Lezama N, Wu Z, Adán-Castro E, Arnold E, Vázquez-Membrillo M, Arredondo-Zamarripa D, Ledesma-Colunga MG, Moreno-Carranza B, Martinez de la Escalera G, Colosi P, Clapp C. Diabetes enhances the efficacy of AAV2 vectors in the retina: therapeutic effect of AAV2 encoding vasoinhibin and soluble VEGF receptor 1. Lab Invest. 2016; 96(3): 283-95
  10. Mookherjee S, Hiriyanna S, Kaneshiro K, Li L, Li Y, Li W, Qian H, Li T, Khanna H, Colosi P, Swaroop A, Wu Z. Long-term rescue of cone photoreceptor degeneration in retinitis pigmentosa 2 (RP2) knockout mice by gene replacement therapy. Hum Mol Genet. 2015; 24(22):6446-58
  11. Shen F, Mao L, Zhu W, Lawton MT, Pechan P, Colosi P, Wu Z, Scaria A, Su H. Inhibition of pathological brain angiogenesis through systemic delivery of AAV vector expressing soluble FLT1. Gene Ther. 2015; 22(11): 893-900
  12. Ou J, Vijayasarathy C, Ziccardi L, Chen S, Zeng Y, Marangoni D, Pope JG, Bush RA, Wu Z, Li W, Sieving PA. Synaptic pathology and therapeutic repair in adult retinoschisis mouse by AAV-RS1 transfer. J Clin Invest. 2015; 125(7): 2891-903
  13. Wu Z, Hiriyanna S, Qian H, Mookherjee S, Campos MM, Gao C, Fariss R, Sieving PA, Li T, Colosi P, Swaroop A. A long-term efficacy study of gene replacement therapy for RPGR-associated retinal degeneration. Hum Mol Genet. 2015; 24(14): 3956-70 12
  14. Monahan PE, Sun J, Gui T, Hu G, Hannah WB, Wichlan DG, Wu Z, Grieger JC, Li C, Suwanmanee T, Stafford DW, Booth CJ, Samulski JJ, Kafri T, McPhee SW, Samulski RJ. Employing a gain-of-function factor IX variant R338L to advance the efficacy and safety of hemophilia B human gene therapy: Preclinical evaluation supporting an ongoing AAV clinical trial. Hum Gene Ther. 2015; 26(2): 69-81
  15. Marangoni D, Wu Z, Wiley HE, Zeiss CJ, Vijayasarathy C, Zeng Y, Hiriyanna S, Bush RA, Wei LL, Colosi P, Sieving PA. Preclinical safety evaluation of a recombinant AAV8 vector for X-linked retinoschisis after intravitreal administration in rabbits. Hum Gene Ther Clin Dev. 2014; 25(4): 202-11
Last Reviewed: 
March 2017
  • NEI Home
  • Contact Us
  • A-Z Site Map
  • NEI on Social Media
  • Information in Spanish (Información en español)
  • Website, Social Media Policies and Other Important Links
  • NEI Employee Emergency Information
  • NEI Intranet (Employees Only)

*PDF files require the free Adobe® Reader® software for viewing.

This website is maintained by the NEI Office of Science Communications, Public Liaison, and Education.
Technical questions about this website can be addressed to the NEI Website Manager.
Department of Health and Human Services | The National Institutes of Health | USA.gov NIH…Turning Discovery Into Health ®