Skip to main content
Home

Search


NEI on Social Media | Search A-Z | en español | Text size S M L
Share
  • About NEI
    • NEI Research Accomplishments
    • Budget and Congress
    • About the NEI Director
    • History of the NEI
    • NEI 50th Anniversary
    • NEI Women Scientists Advisory Committee (WSAC)
    • Board of Scientific Counselors
    • National Advisory Eye Council (NAEC)
    • Donating to the NEI

     Contact Us

     Visiting the NIH Campus

    Mission Statement

    As part of the federal government’s National Institutes of Health (NIH), the National Eye Institute’s mission is to “conduct and support research, training, health information dissemination, and other programs with respect to blinding eye diseases, visual disorders, mechanisms of visual function, preservation of sight, and the special health problems and requirements of the blind.”

  • News & Events
    • Events Calendar
    • NEI Press Releases
    • News from NEI Grantees
    • Spokesperson bios
    • Statistics and Data
    • Resources for the media

    Pressroom Contacts

    Dustin Hays - Chief, Science Communication
    dustin.hays@nih.gov

    Kathryn DeMott, Media Relations
    Kathryn.DeMott@nih.gov

    NEI Office of Communications
    (301)496-5248

  • Health Information
    • Frequently asked questions
    • Clinical Studies
    • Publications Catalog
    • Photos and Images
    • Spanish Language Information
  • Grants and Funding
    • Extramural Research
    • Division of Extramural Science Programs
    • Division of Extramural Activities

    Extramural Contacts

    NEI Division of Extramural Research
    Suite 1300
    5635 Fishers Lane, MSC 9300
    Bethesda, MD 20892-9300
    (Courier services use: Rockville, MD 20852)
    301-451-2020

  • Research at NEI
    • Office of the Scientific Director
    • Office of the Clinical Director
    • Laboratories, Sections and Units
    • Division of Epidemiology and Clinical Applications
    • eyeGENE

    Research Directors Office

    Office of the Scientific Director

    Sheldon S. Miller, Ph.D., Scientific Director
    David M. Schneeweis, Ph.D., Deputy Scientific Director

    Office of the Clinical Director

    Brian P. Brooks, M.D, Ph.D., Clinical Director
    Emily Y. Chew, M.D., Deputy Clinical Director

  • Education Programs
    • National Eye Health Education Program (NEHEP)
    • Diabetic Eye Disease Education Program
    • Glaucoma Education Program
    • Low Vision Education Program
    • Hispanic/Latino Program
    • Vision and Aging Program
    • African American Program
  • Training and Jobs
    • Fellowships
    • NEI Summer Intern Program
    • Diversity In Vision Research & Ophthalmology (DIVRO)
    • Student Training Programs

    To search for current job openings visit HHS USAJobs

Home >> News >> Briefs >> Retinal Device Restores Sight in Mice
Listen

Topics

Age-Related Macular Degeneration (AMD)
AIDS-related eye disease (cytomegalovirus [CMV] retinitis)
Amblyopia
Anophthalmia and Microphthalmia
Appointments
Astigmatism
Audacious Goals Challenge
Awards
Behçet’s Disease of the Eye
Bietti's Crystalline Dystrophy
Blepharitis
Blepharospasm
Cataracts
Clinical Studies
coloboma
Color Blindness
Convergence Insufficiency (CI)
Cornea
Diabetic Eye Disease
Dry Eye
Education Programs
Eye Cancer
Eye Surgery
Floaters
Gene
Glaucoma
Healthy Vision Month
Hispanic/Latino Americans
Histoplasmosis
Hyperopia
Idiopathic Intracranial Hypertension
Infancy
Infectious Eye Disease
Leber Congenital Amaurosis (LCA)
Low Vision
Macular Degeneration
Macular Edema
Macular Hole
Macular Pucker
Myopia
NEI
NEI Remembers
NEI Website
Optic Nerve Disorders
Pink Eye (Conjunctivitis)
Preschool
Rare Diseases
Refractive Errors
Refractive Surgery
Retina
Retinal Disease
Retinitis Pigmentosa
Retinoblastoma
Retinopathy of Prematurity (ROP)
Retinoschisis
Spanish
Spanish
Stargardt Disease
Stem Cells
Usher Syndrome
Uveitis/Inflammatory Eye Disease
Vision Screening
World Sight Day

Retinal Device Restores Sight in Mice

News Brief
09/07/12

Researchers have developed a new prosthetic technique that can restore vision to blind mice. The approach could potentially be further developed to improve sight in blind people.

More than 20 million people worldwide have vision loss or blindness because of retinal degenerative diseases such as age-related macular degeneration and retinitis pigmentosa. These diseases gradually damage photoreceptors, the light-detecting cells in the retina. Ganglion cells, which deliver signals to the brain for processing, are usually spared.

One promising approach to restoring lost vision is through prosthetic devices. Current prosthetics create a detour around damaged photoreceptors and directly stimulate ganglion cells, allowing patients to see spots of light and edges. This improves the ability to see light and shapes, but vision is still limited.

Recent research has focused on making the resolution, or image quality, better by stimulating more ganglion cells. These cells, however, have to be stimulated in a particular way so that they can change images into signal patterns the brain can understand. Current prosthetics don’t accurately mimic the same patterns of signals that the retina normally produces-the retinal code.

In research funded in part by NIH’s National Eye Institute (NEI), Dr. Sheila Nirenberg and postdoctoral researcher Dr. Chethan Pandarinath of Weill Cornell Medical College set out to design a prosthetic that generates an output more like a normal retina. They created a 3-part prosthetic system. The core innovation in the system is the encoder, which transforms images into electrical pulses. The electrical pulses are then converted into light pulses by a mini-projector. The light pulses stimulate light-sensitive proteins, which are inserted into ganglion cells through genetic engineering. The ganglion cells then forward these light-based patterns of signals to the brain. The researchers described their work online on August 13, 2012, in Proceedings of the National Academy of Sciences.

The scientists tested movies of natural scenes, such as landscapes, faces and people walking. They compared mice with normal sight to blind mice using the encoder prosthetic or a standard prosthetic. To test if their prosthetic was producing the normal retinal code, they placed electrodes next to ganglion cells in the mouse retina to measure their output.

Blind mice viewing movies through the encoder prosthetic produced output patterns similar to those of mice with normal sight. The output patterns of blind mice using the standard prosthetic were very different from normal. There was enough information in the encoder system’s output for the team to reconstruct a variety of images, including faces. The scientists also found that when the encoder and high-resolution stimulation were used in combination in blind mice, the animals were able to track images shown to them.

“What these findings show is that the critical ingredients for building a highly effective retinal prosthetic-the retina’s code and a high-resolution stimulating method-are now, to a large extent, in place,” says Nirenberg. Further study is needed before the retinal prosthetic could be tested in human clinical trials.

-by Miranda Hanson, Ph.D.

From:
NIH Research Matters
August 27, 2012
http://www.nih.gov/researchmatters/august2012/08272012sight.htm

  • NEI Home
  • Contact Us
  • A-Z Site Map
  • NEI on Social Media
  • Information in Spanish (Información en español)
  • Website, Social Media Policies and Other Important Links
  • NEI Employee Emergency Information
  • NEI Intranet (Employees Only)

*PDF files require the free Adobe® Reader® software for viewing.

This website is maintained by the NEI Office of Science Communications, Public Liaison, and Education.
Technical questions about this website can be addressed to the NEI Website Manager.
Department of Health and Human Services | The National Institutes of Health | USA.gov NIH…Turning Discovery Into Health ®