Skip to content

Johnny Tam, Ph.D.

Stadtman Investigator:

Research interests: Clinical and translational imaging

Contact Information: 301-435-7821

Building 10, Room 10N109
10 Center Drive
Bethesda, Maryland 20892-1860


Dr. Tam received a bachelor’s degree in bioengineering from the University of California, San Diego, followed by a Ph.D. in bioengineering from a joint program administered by the University of California, San Francisco and the University of California, Berkeley. His graduate studies, under the mentorship of Austin Roorda, focused on developing noninvasive microvascular imaging tools to study diabetic retinopathy. He then went on to pursue postdoctoral training in the lab of Melike Lakadamyali, working on stochastic optical reconstruction microscopy (STORM), a superresolution technique. Dr. Tam was recently named a Stadtman Investigator, where he and his staff are working on clinical applications of adaptive optics.

Current research

The goal of our research is to understand the onset and progression of retinal diseases at the cellular level, using advanced optical imaging techniques such as adaptive optics. Adaptive optics is a technology for measuring and correcting the optical imperfections utilized in astronomy, microscopy, and vision science. When combined with a state-of-the-art ophthalmic imaging platform, highly detailed images of the cells in the human retina can be acquired. 

The approach is to visualize healthy and diseased cells directly inside patients’ eyes to determine the sequence and timing of all the cumulative microscopic changes that give rise to clinically-significant disease phenotypes. Our research spans the development, implementation, and application of advanced optical instrumentation, as well as the acquisition, processing, and analysis of rich imaging datasets. We are particularly interested in studying the outer retina, consisting of photoreceptor neurons, retinal pigment epithelial cells, and choriocapillaris blood vessels. This multi-layered complex is not only critical for the phenomenon of vision, but also, is a useful system for modeling the in vivo interactions of neurons, epithelial cells, and vasculature within the central nervous system, in health, aging, and disease.

Selected publications

Last updated: May 12, 2020