
About our work
High resolution fluorescence imaging of ocular tissues presents unique opportunities as well as technical challenges for scientists attempting to visualize pathological changes in the cornea, lens, retina or retinal pigment epithelium. Exploiting the transparency of the vertebrate eye and innovations in ocular imaging, vision researchers and ophthalmologists have gained unprecedented insight into a wide array of ocular processes.
The National Eye Institute's Biological Imaging Core provides NEI scientists with a wide range of high resolution imaging and analysis applications including confocal microscopy, multi-photon imaging, Airyscan super-resolution, deconvolution, laser capture microdissection, in vivo and in vitro imaging. The primary objective of the Biological Imaging Core is to pair state-of-the-art instrumentation with novel imaging approaches to provide vision scientists new avenues for studying ocular disease processes.
Facilities and equipment
- Leica SP8 Resonant Scanning Confocal Microscope + Spectra Physics Mai Tai “Deep See” Multi-photon Laser
- Zeiss LSM 880 Confocal Microscope – 32 channel GaAsP + Airyscan detector for super-resolution imaging
- Zeiss LSM 700 Confocal Microscope – 4 laser lines/ motorized stage/ live cell imaging
- Olympus FV1000 Confocal Microscope
- Zeiss Imager Z1 – Image acquisition of fluorescently labeled and H&E samples
- Zeiss PALM Laser Capture Microdissection System
- Phoenix Labs Micron III Rodent Fundus Imaging System
Biological Imaging Core Facility key staff
Name | Title | Phone | |
---|---|---|---|
Jennifer Kielczewski, Ph.D. | Staff Scientist | kielczewskijl@nei.nih.gov | |
Robert Fariss, Ph.D. | Core Chief, Associate Researcher | farissr@nei.nih.gov | 301-496-2829 |