Skip to content

Because of a lapse in government funding, the information on this website may not be up to date, transactions submitted via the website may not be processed, and the agency may not be able to respond to inquiries until appropriations are enacted.
The NIH Clinical Center (the research hospital of NIH) is open. For more details about its operating status, please visit cc.nih.gov.
Updates regarding government operating status and resumption of normal operations can be found at OPM.gov.

The mammalian brain is built from many kinds of neurons. A new study reveals a holistic way to look at them.

Using a technique that simultaneously captures different kinds of features from each cell, researchers lay groundwork for a “family tree” of the brain
November 12, 2020
Imaging Neuroscience
Basic Research
Grantee
Colored neuron images arranged in a circle

This dendrogram shows 25 congruent cell types from a part of the mouse brain that processes visual information. Scientists measured the electrical, morphological and transcriptomic properties of more than 500 cells in their quest to build a "periodic table" of brain cell types. Image credit: Allen Institute.

A new lens on visual neurons is laying the groundwork for a more complete “family tree” of the mammalian brain. A team of researchers from the Allen Institute for Brain Science, a division of the Allen Institute, published a study — the largest of its kind to date — in the journal Cell today revealing a new categorization of mouse neurons that relies on multiple types of data drawn from each individual cell.

The Allen Institute team used a special technique to simultaneously capture a brain cell’s 3D shape, its unique electrical properties, and the suite of genes it switches on, from hundreds of individual neurons from the part of the mouse brain that processes visual information. Because this technique captures multiple types of data from each single cell, the researchers can use this dataset to classify the neurons into different types, part of their larger effort to build a “periodic table” of the mammalian brain. The data and the cell-classification scheme can link together other studies that focus on just one characteristic, resulting in a more holistic understanding of different brain cells and their relationships.