Skip to content

Because of a lapse in government funding, the information on this website may not be up to date, transactions submitted via the website may not be processed, and the agency may not be able to respond to inquiries until appropriations are enacted.
The NIH Clinical Center (the research hospital of NIH) is open. For more details about its operating status, please visit cc.nih.gov.
Updates regarding government operating status and resumption of normal operations can be found at OPM.gov.

New method enables long-lasting imaging of rapid brain activity in individual cells deep in the cortex

August 18, 2022
Devices Imaging Neuroscience
Basic Research
Grantee

As you are reading these words, certain regions of your brain are displaying a flurry of millisecond-fast electrical activity. Visualizing and measuring this electrical activity is crucial to understand how the brain enables us to see, move, behave or read these words. However, technological limitations are delaying neuroscientists from achieving their goal of improving the understanding of how the brain works.

Scientists at Baylor College of Medicine and collaborating institutions report in the journal Cell a new sensor that allows neuroscientists to image brain activity without missing signals, for an extended time and deeper in the brain than previously possible. This work is paving the way to new discoveries on how the brain functions in awake, active animals both those that are healthy and those with neurological conditions.

The holy grail of neuroscience

“Not only is the brain’s electrical activity very fast, it also involves a variety of cell types that have different roles in brain computations,” said corresponding author, Dr. François St-Pierre, assistant professor of neuroscience and a McNair scholar at Baylor. He also is an adjunct assistant professor of electrical and computer sciences at Rice University. “It has been challenging to figure out how to noninvasively observe the millisecond-fast electrical activity in individual neurons of specific cell types in animals carrying on an activity. To be able to do this has been the holy grail of neuroimaging.”

Baylor co-authors Dr. Andreas Tolias, professor of neuroscience, and Dr. Jacob Reimer, assistant professor of neuroscience, demonstrated that their new technique, JEDI-2P, can report electrical activity in mice using imaging equipment available in many neuroimaging labs.