Skip to content

A New Microscope for Imaging Neural Circuitry

December 2, 2021
Spencer Smith with microscope in laboratory

Spencer Smith in the lab with the groundbreaking Diesel2p.

Advancing our understanding of the human brain requires new insights into how neural circuitry works in mammals, including laboratory mice. These investigations require monitoring brain activity with a microscope that provides resolution high enough to see individual neurons and their neighbors.

Two-photon fluorescence microscopy has significantly advanced researchers’ ability to do that, and the lab of Spencer LaVere Smith, an associate professor in the Department of Electrical and Computer Engineering at UC Santa Barbara, is a hub of research related to advancing the technology. 

Smith and his co-authors report the development of a new microscope they describe as “Dual Independent Enhanced Scan Engines for Large field-of-view Two-Photon imaging (Diesel2p),” in the Nov. 17 issue of Nature Communications. This new two-photon microscope provides unprecedented brain-imaging ability. It has the largest field of view (up to 25 square millimeters) of any such instrument, allowing it to provide subcellular resolution of multiple areas of the brain.