Skip to content

Because of a lapse in government funding, the information on this website may not be up to date, transactions submitted via the website may not be processed, and the agency may not be able to respond to inquiries until appropriations are enacted.
The NIH Clinical Center (the research hospital of NIH) is open. For more details about its operating status, please visit cc.nih.gov.
Updates regarding government operating status and resumption of normal operations can be found at OPM.gov.

Spot the difference: Brain changes that enable fine visual discrimination learning

July 8, 2022
Neuroscience Visual Processing
Basic Research
Grantee
Joseph Schumacher and David Fitzpatrick

Joseph Schumacher and David Fitzpatrick. Image credit: MPFI

Our visual perception of the world is often thought of as relatively stable. However, like all of our cognitive functions, visual processing is shaped by our experiences. During both development and adulthood, learning can alter visual perception. For example, improved visual discrimination of similar patterns is a learned skill critical for reading. In a new research study published in Current Biology, scientists have now discovered the neuronal changes that occur during learning to improve discrimination of closely related visual images.

This study, led by first author Dr. Joseph Schumacher and senior author Dr. David Fitzpatrick at the Max Planck Florida Institute for Neuroscience, establishes a transformative approach to studying perceptual learning in the brain. Researchers imaged the activity of large numbers of single neurons over days to track the changes that occur while a visual discrimination task is learned, performing these experiments in a novel animal model, the tree shrew.

“This work demonstrates specific experience-driven changes in the activity of neurons that impact the perception of visual stimuli, enhancing discriminations relevant to task performance at the expense of other related discriminations,” explains first author Joe Schumacher. Now the lab has set its sights on combining this approach with new technologies to unlock the sequence and changes that occur in multiple types of neurons in order to mediate perceptual learning. By probing these questions in the visual system of the tree shrew, scientists in the Fitzpatrick lab are discovering fundamental new insights about perceptual learning that could impact our understanding of a broad range of learning disorders.