Skip to content

UCI researchers discover new drugs with potential for treating world’s leading causes of blindness

May 8, 2023
Schematic showing SREDs bind to G-protein coupled receptors to promote cell survival

Molecular mechanisms of stress resilience-enhancing drug (SRED) therapy. Retinal degeneration involves a complex, multifactorial combination of genetic factors and environmental exposures that accumulate over a lifetime and eventually overwhelm intrinsic stress resilience mechanisms, which can be enhanced pharmacologically by SREDs to alleviate disease and preserve vision. Image credit: UCI School of Medicine

In a University of California, Irvine-led study, researchers have discovered small-molecule drugs with potential clinical utility in the treatment of age-related macular degeneration (AMD), diabetic retinopathy (DR), and retinitis pigmentosa (RP).

Despite decades of research, therapeutic options for the millions of patients suffering from these disorders remain severely limited, especially for treating earlier stages of disease when the opportunity to preserve the retinal structure and visual function is greatest.

To address this urgent, unmet medical need, the researchers in this study innovated a systems pharmacology platform that leverages state-of-the-art disease modeling and characterization to identify novel, mechanism-based therapies that mitigate disease at the root cause. The SRED therapeutic intervention enhanced resilience to acute and chronic forms of stress in the degenerating retina, thus preserving tissue structure and function across multiple models of age-related or inherited retinal disease. Taken together, these findings exemplify a systems pharmacology approach to drug discovery and development, revealing a new class of therapeutics with potential clinical utility in the treatment or prevention of the most common causes of blindness.